Deep Networks

Jin Sun

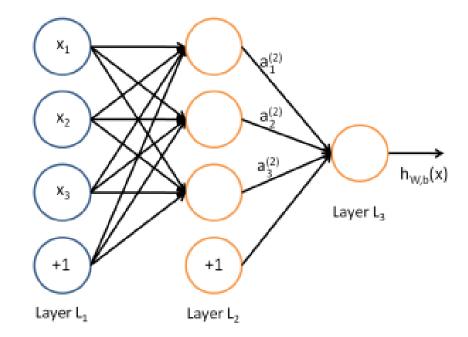
- * Some figures are from Andrew Ng's cs294a course notes.
- * Some figures are from Alex Krizhevsky's ImageNet paper.

Zoo of Networks

Neural Networks

- One layer neural network: logistic regression, perceptron
- Multi-layer Perceptron, single hidden layer network: autoencoder
- Deep neural networks
 - Convolutional Neural Networks: LeNet, ImageNet, R-CNN, MCDNN
 - Memory based neural networks: Recurrent Neural Networks, LSTM

Belief Networks


- Boltzmann Machine, Restricted Boltzmann Machine
- Deep Boltzmann Machine
- Deep Belief Networks

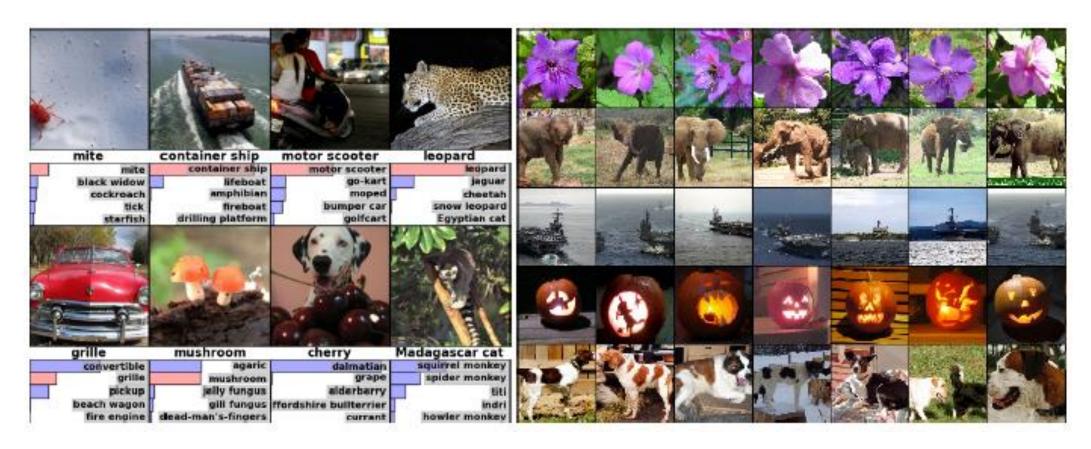
Key Concepts

- Backpropagation, SGD
- Non-linearity / Universal Approximator
- Non convexity / Generalization
- Going deep → exponentially powerful
- Vanishing (exploding) Gradient
- Content addressable memory
- Techniques
 - Generalization, constraints

Forward propagation

- From input layer to output layer
 - $a^{(l+1)} = f(W^{(l\to l+1)}a^{(l)})$
 - \bullet f is the activation (squashing) function
 - Non-linear: logistic, tanh, ReLU, etc...
 - Usually bounds intermediate values
 - Pros and Cons
- Loss function
 - Compute the error with target values
 - L2 loss, cross entropy loss

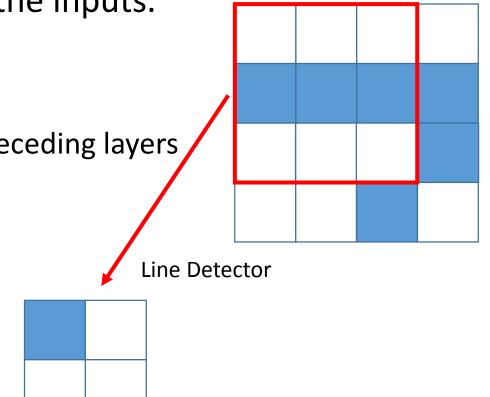
Backward propagation


Gradient descent

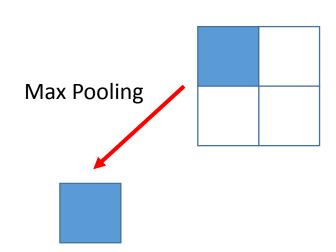
•
$$\frac{\partial loss}{\partial w^{(l\to l+1)}} = \left(\frac{\partial a^{(l+1)}}{\partial w^{(l\to l+1)}}\right)^T \left(\frac{\partial a^{(l+2)}}{\partial a^{(l+1)}}\right)^T \cdots \left(\frac{\partial y}{\partial a^{(last\ hidden\ layer)}}\right)^T \left(\frac{\partial loss}{\partial y}\right)$$

Momentum

$$\Delta w(t) = -lr * \nabla(w) + \eta \Delta w(t-1)$$


ImageNet

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf


Convolutional Layer

- Fixed size filter (kernel) scanning on the inputs.
 - $a = f(\sum_{i,j \in kernel} w_{i,j} x_{r+i,c+j})$
- Detect local patterns
 - Low level features (lines, corners) in preceding layers
 - High level features (beard, hair, faces)
 in succeeding layers
- Network perspective:
 - sparse connection, identical weights

Pooling Layer

- Aggregating detections
 - The max (mean) value of the kernel
- Network perspective:
 - sparse connection, identical weights

Network Architecture

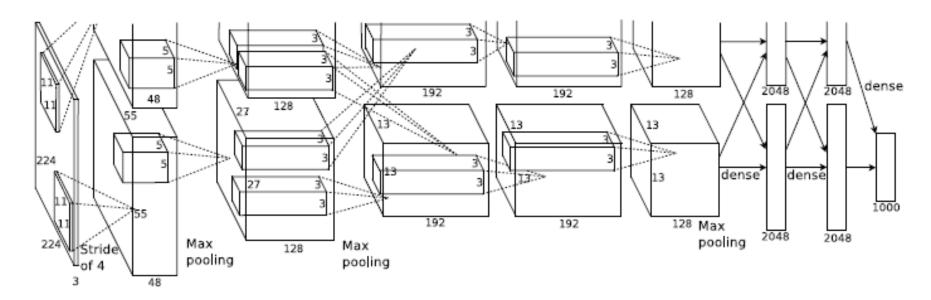
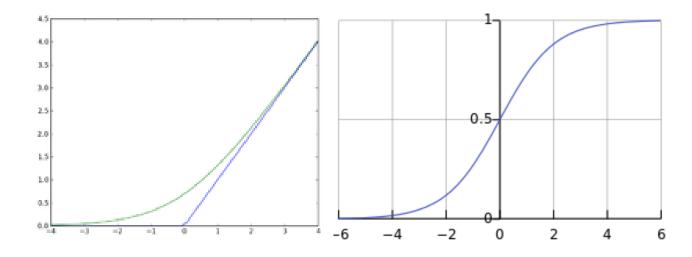
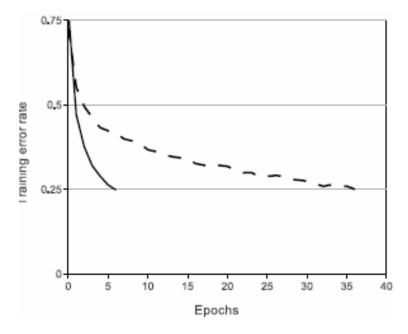




Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

ReLU activation

- $f(z) = \max(0, z)$
- Soft-plus: $f(z) = \ln(1 + e^z)$

Reduce Overfitting

- Data augmentation
 - Horizontal Reflection
 - PCA
 - Perform PCA on the set of RGB pixel values throughout the training set
 - For each RGB pixel, add $[p_1, p_2, p_3][\alpha_1\lambda_1, \alpha_2\lambda_2, \alpha_3\lambda_3]^{\mathsf{T}}$
 - $\alpha \sim \mathcal{N}(0,0.1^2)$
 - Object identity is invariant to changes in the intensity and color of the illumination
- Dropout
- Local Response Normalization

•
$$b_{x,y}^i = a_{x,y}^i / \left(k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} \left(a_{x,y}^j\right)^2\right)^{\beta}$$

Overlapping Pooling

Dataset

- ILSVRC: subset of ImageNet, ~1000 images in each of 1000 categories
 - 1.2 million training images
 - 50,000 validation images
 - 150,000 testing images
- Down-sample images to fixed resolution: 256*256
- Extract 224*224 patches from 256*256

Results

Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%

Table 1: Comparison of results on ILSVRC-2010 test set. In *italics* are best results achieved by others.

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SIFT + FVs[7]			26.2%
1 CNN	40.7%	18.2%	_
5 CNNs	38.1%	16.4%	16.4%
1 CNN*	39.0%	16.6%	_
7 CNNs*	36.7%	15.4%	15.3%

Table 2: Comparison of error rates on ILSVRC-2012 validation and test sets. In *italics* are best results achieved by others. Models with an asterisk* were "pre-trained" to classify the entire ImageNet 2011 Fall release. See Section 6 for details.